Here is the status of such numbers. It seems extremely unlikely that any more of the numbers S(n) would be prime (A121270).
k | m | n | status of S(n) |
---|---|---|---|
0 | 1 | 2 | prime, 2^2 + 1 = 5 |
1 | 3 | 4 | prime, 4^4 + 1 = 257 |
2 | 6 | 16 | composite, 16^16 + 1 has factor 1071*2^8 + 1 |
3 | 11 | 256 | composite, 256^256 + 1 has factor 39*2^13 + 1 |
4 | 20 | 65536 | composite, but no factor known |
5 | 37 | composite, S(n) has factor 1275438465*2^39 + 1 | |
6 | 70 | status unknown | |
7 | 135 | status unknown | |
8 | 264 | status unknown | |
9 | 521 | status unknown | |
10 | 1034 | status unknown | |
11 | 2059 | composite, S(n) has factor 591909*2^2063 + 1 | |
12 | 4108 | status unknown | |
13 | 8205 | status unknown | |
14 | 16398 | status unknown | |
15 | 32783 | status unknown | |
16 | 65552 | status unknown | |
17 | 131089 | status unknown | |
18 | 262162 | status unknown | |
19 | 524307 | status unknown | |
20 | 1048596 | status unknown | |
21 | 2097173 | status unknown | |
22 | 4194326 | status unknown | |
23 | 8388631 | status unknown | |
24 | 16777240 | status unknown | |
25 | 33554457 | status unknown | |
26 | 67108890 | status unknown | |