Exponents n | |
---|---|
b=2 | 0, 1, 2, 3, 4, ... |
b=4 | Please see under b=2 |
b=6 | 0, 1, 2, ... |
b=8 | Impossible since 8=2^3 |
b=10 | 0, 1, ... |
b=12 | 0, ... |
b=14 | 1, ... |
b=16 | Please see under b=2 |
b=18 | 0, ... |
b=20 | 1, 2, ... |
b=22 | 0, ... |
b=24 | 1, 2, ... |
b=26 | 1, ... |
b=28 | 0, 2, ... |
b=30 | 0, 5, ... |
b=32 | Impossible since 32=2^5 |
b=34 | 2, ... |
b=36 | Please see under b=6 |
b=38 | ... |
b=40 | 0, 1, ... |
b=42 | 0, ... |
b=44 | 4, ... |
b=46 | 0, 2, 9, ... |
b=48 | 2, ... |
b=50 | ... |
b=52 | 0, ... |
b=54 | 1, 2, 5, ... |
b=56 | 1, 2, ... |
b=58 | 0, ... |
b=60 | 0, ... |
b=62 | ... |
b=64 | Impossible since 64=4^3 |
b=66 | 0, 1, ... |
b=68 | ... |
b=70 | 0, ... |
b=72 | 0, ... |
b=74 | 1, 2, 4, ... |
b=76 | 4, ... |
b=78 | 0, ... |
b=80 | 2, ... |
b=82 | 0, 2, ... |
b=84 | 1, ... |
b=86 | ... |
b=88 | 0, 2, ... |
b=90 | 1, 2, ... |
b=92 | ... |
b=94 | 1, 4, ... |
b=96 | 0, 5, ... |
b=98 | ... |
b=100 | Please see under b=10 |
b=102 | 0, 6, ... |
b=104 | ... |
b=106 | 0, 2, ... |
b=108 | 0, ... |
b=110 | 1, ... |
b=112 | 0, 5, ... |
b=114 | 5, ... |
b=116 | 1, ... |
b=118 | 2, 3, ... |
b=120 | 1, 7, ... |
b=122 | ... |
b=124 | 1, ... |
b=126 | 0, 1, ... |
b=128 | Impossible since 128=2^7 |
b=130 | 0, 1, ... |
b=132 | 2, 3, 5, ... |
b=134 | 1, ... |
b=136 | 0, ... |
b=138 | 0, ... |
b=140 | 2, 3, ... |
b=142 | 2, ... |
b=144 | Please see under b=12 |
b=146 | 1, ... |
b=148 | 0, ... |
b=150 | 0, 1, 11, ... |
b=152 | 3, ... |
b=154 | 2, ... |
b=156 | 0, 1, 4, 5, ... |
b=158 | 4, ... |
b=160 | 1, 2, ... |
b=162 | 0, 6, ... |
b=164 | 2, ... |
b=166 | 0, ... |
b=168 | ... |
b=170 | 1, ... |
b=172 | 0, ... |
b=174 | 2, ... |
b=176 | 1, 4, ... |
b=178 | 0, ... |
b=180 | 0, 1, 2, ... |
b=182 | ... |
b=184 | 1, ... |
b=186 | ... |
b=188 | 4, ... |
b=190 | 0, 7, ... |
b=192 | 0, ... |
b=194 | 2, ... |
b=196 | Please see under b=14 |
b=198 | 0, 2, 4, ... |
b=200 | ... |
b=202 | ... |
b=204 | 1, 2, ... |
b=206 | 1, ... |
b=208 | 3, ... |
b=210 | 0, 1, 2, ... |
b=212 | ... |
b=214 | ... |
b=216 | Impossible since 216=6^3 |
b=218 | ... |
b=220 | 2, ... |
b=222 | 0, ... |
b=224 | 1, ... |
b=226 | 0, ... |
b=228 | 0, 2, ... |
b=230 | 1, ... |
b=232 | 0, ... |
b=234 | 7, ... |
b=236 | 1, ... |
b=238 | 0, 2, ... |
b=240 | 0, 1, 3, ... |
b=242 | 2, 3, ... |
b=244 | ... |
b=246 | ... |
b=248 | 2, 4, ... |
b=250 | 0, 1, ... |
b=252 | ... |
b=254 | 2, ... |
b=256 | Please see under b=2 |
b=258 | ... |
b=260 | 1, ... |
b=262 | 0, ... |
b=264 | 1, ... |
b=266 | 2, ... |
b=268 | 0, ... |
b=270 | 0, 1, ... |
b=272 | 2, ... |
b=274 | 6, ... |
b=276 | 0, 2, ... |
b=278 | 2, 8, ... |
b=280 | 0, 1, ... |
b=282 | 0, ... |
b=284 | 1, ... |
b=286 | ... |
b=288 | 2, 3, 4, ... |
b=290 | 3, ... |
b=292 | 0, ... |
b=294 | ... |
b=296 | 2, ... |
b=298 | ... |
b=300 | 1, 6, ... |
b=302 | ... |
b=304 | ... |
b=306 | 0, 1, 3, 4, ... |
b=308 | ... |
b=310 | 0, ... |
b=312 | 0, 2, ... |
b=314 | 1, ... |
b=316 | 0, ... |
b=318 | 4, ... |
b=320 | 2, ... |
b=322 | ... |
b=324 | Please see under b=18 |
b=326 | 1, ... |
b=328 | 2, ... |
b=330 | 0, 4, ... |
b=332 | 5, ... |
b=334 | 2, ... |
b=336 | 0, ... |
b=338 | ... |
b=340 | 1, 2, ... |
b=342 | 5, ... |
b=344 | ... |
b=346 | 0, ... |
b=348 | 0, 4, ... |
b=350 | 1, ... |
b=352 | 0, 2, ... |
b=354 | ... |
b=356 | ... |
b=358 | 0, ... |
b=360 | 5, ... |
b=362 | ... |
b=364 | 2, ... |
b=366 | 0, ... |
b=368 | ... |
b=370 | 4, ... |
b=372 | 0, ... |
b=374 | 2, ... |
b=376 | 5, ... |
b=378 | 0, 3, ... |
b=380 | ... |
b=382 | 0, 4, ... |
b=384 | 1, ... |
b=386 | 1, ... |
b=388 | 0, ... |
b=390 | ... |
b=392 | 3, ... |
b=394 | ... |
b=396 | 0, 1, 4, ... |
b=398 | ... |
b=400 | Please see under b=20 |
b=402 | ... |
b=404 | ... |
b=406 | 1, ... |
b=408 | 0, ... |
b=410 | ... |
b=412 | 6, ... |
b=414 | 2, ... |
b=416 | ... |
b=418 | 0, ... |
b=420 | 0, 1, ... |
b=422 | ... |
b=424 | ... |
b=426 | 3, ... |
b=428 | 5, ... |
b=430 | 0, 1, 2, 5, ... |
b=432 | 0, 5, ... |
b=434 | 3, ... |
b=436 | 1, 2, ... |
b=438 | 0, ... |
b=440 | 1, ... |
b=442 | 0, 2, 3, ... |
b=444 | 1, ... |
b=446 | ... |
b=448 | 0, 5, ... |
b=450 | ... |
b=452 | 4, ... |
b=454 | ... |
b=456 | 0, 4, ... |
b=458 | ... |
b=460 | 0, ... |
b=462 | 0, ... |
b=464 | 1, ... |
b=466 | 0, 1, 2, ... |
b=468 | ... |
b=470 | 1, 4, ... |
b=472 | 2, ... |
b=474 | 1, 4, ... |
b=476 | 2, 4, ... |
b=478 | 0, 4, ... |
b=480 | ... |
b=482 | ... |
b=484 | Please see under b=22 |
b=486 | 0, ... |
b=488 | 2, ... |
b=490 | 0, 1, ... |
b=492 | 2, ... |
b=494 | 2, ... |
b=496 | 1, ... |
b=498 | 0, 2, ... |
b=500 | ... |
b=502 | 0, ... |
b=504 | 2, ... |
b=506 | 7, ... |
b=508 | 0, 3, ... |
b=510 | 3, ... |
b=512 | Impossible since 512=8^3 |
b=514 | ... |
b=516 | 2, ... |
b=518 | ... |
b=520 | 0, ... |
b=522 | 0, ... |
b=524 | ... |
b=526 | 2, ... |
b=528 | ... |
b=530 | ... |
b=532 | 7, ... |
b=534 | ... |
b=536 | 1, ... |
b=538 | ... |
b=540 | 0, 2, 3, ... |
b=542 | 3, ... |
b=544 | 1, ... |
b=546 | 0, ... |
b=548 | 7, ... |
b=550 | 2, ... |
b=552 | ... |
b=554 | 2, ... |
b=556 | 0, 1, 2, ... |
b=558 | ... |
b=560 | 4, ... |
b=562 | 0, 3, 5, 6, ... |
b=564 | ... |
b=566 | 2, ... |
b=568 | 0, 2, 4, ... |
b=570 | 0, 1, ... |
b=572 | ... |
b=574 | ... |
b=576 | Please see under b=24 |
b=578 | ... |
b=580 | ... |
b=582 | 2, ... |
b=584 | 1, 2, ... |
b=586 | 0, ... |
b=588 | 5, ... |
b=590 | ... |
b=592 | 0, 6, ... |
b=594 | 1, ... |
b=596 | 3, ... |
b=598 | 0, 4, ... |
b=600 | 0, 2, ... |
b=602 | ... |
b=604 | ... |
b=606 | 0, ... |
b=608 | ... |
b=610 | 3, ... |
b=612 | 0, ... |
b=614 | 8, ... |
b=616 | 0, 2, ... |
b=618 | 0, ... |
b=620 | ... |
b=622 | ... |
b=624 | 2, ... |
b=626 | ... |
b=628 | 2, ... |
b=630 | 0, ... |
b=632 | ... |
b=634 | 1, ... |
b=636 | 1, ... |
b=638 | ... |
b=640 | 0, ... |
b=642 | 0, 4, ... |
b=644 | 1, ... |
b=646 | 0, 1, ... |
b=648 | ... |
b=650 | ... |
b=652 | 0, ... |
b=654 | 1, ... |
b=656 | 2, ... |
b=658 | 0, ... |
b=660 | 0, ... |
b=662 | ... |
b=664 | 3, ... |
b=666 | ... |
b=668 | ... |
b=670 | ... |
b=672 | 0, ... |
b=674 | 1, ... |
b=676 | Please see under b=26 |
b=678 | ... |
b=680 | 1, 3, ... |
b=682 | 0, 3, ... |
b=684 | ... |
b=686 | 1, 4, ... |
b=688 | 4, ... |
b=690 | 0, 1, 2, 4, ... |
b=692 | ... |
b=694 | ... |
b=696 | 1, ... |
b=698 | ... |
b=700 | 0, 1, ... |
b=702 | 2, ... |
b=704 | 1, ... |
b=706 | ... |
b=708 | 0, ... |
b=710 | 2, ... |
b=712 | ... |
b=714 | 1, ... |
b=716 | 1, ... |
b=718 | 0, ... |
b=720 | ... |
b=722 | ... |
b=724 | ... |
b=726 | 0, 5, ... |
b=728 | 6, ... |
b=730 | 2, ... |
b=732 | 0, 2, 3, ... |
b=734 | ... |
b=736 | 4, ... |
b=738 | 0, 2, 5, ... |
b=740 | 1, ... |
b=742 | 0, 2, ... |
b=744 | ... |
b=746 | ... |
b=748 | 2, ... |
b=750 | 0, 1, ... |
b=752 | ... |
b=754 | ... |
b=756 | 0, ... |
b=758 | 2, ... |
b=760 | 0, 1, 2, ... |
b=762 | ... |
b=764 | 1, ... |
b=766 | ... |
b=768 | 0, 2, ... |
b=770 | ... |
b=772 | 0, 2, ... |
b=774 | 4, ... |
b=776 | 4, ... |
b=778 | 2, 4, ... |
b=780 | 1, ... |
b=782 | 3, ... |
b=784 | Please see under b=28 |
b=786 | 0, 2, ... |
b=788 | 2, ... |
b=790 | 4, ... |
b=792 | ... |
b=794 | ... |
b=796 | 0, ... |
b=798 | 2, ... |
b=800 | 2, 3, ... |
b=802 | ... |
b=804 | 5, ... |
b=806 | ... |
b=808 | 0, 3, ... |
b=810 | 0, 2, ... |
b=812 | ... |
b=814 | ... |
b=816 | 1, ... |
b=818 | ... |
b=820 | 0, ... |
b=822 | 0, ... |
b=824 | 10, ... |
b=826 | 0, 1, ... |
b=828 | 0, ... |
b=830 | 4, ... |
b=832 | 4, ... |
b=834 | 4, ... |
b=836 | ... |
b=838 | 0, ... |
b=840 | ... |
b=842 | ... |
b=844 | ... |
b=846 | 4, ... |
b=848 | ... |
b=850 | 5, ... |
b=852 | 0, ... |
b=854 | ... |
b=856 | 0, 2, ... |
b=858 | 0, ... |
b=860 | 1, ... |
b=862 | 0, ... |
b=864 | 1, ... |
b=866 | 3, ... |
b=868 | ... |
b=870 | ... |
b=872 | ... |
b=874 | 2, ... |
b=876 | 0, 3, ... |
b=878 | ... |
b=880 | 0, ... |
b=882 | 0, ... |
b=884 | 3, 5, ... |
b=886 | 0, ... |
b=888 | ... |
b=890 | 1, ... |
b=892 | 3, 8, ... |
b=894 | 2, ... |
b=896 | ... |
b=898 | 8, ... |
b=900 | Please see under b=30 |
b=902 | ... |
b=904 | ... |
b=906 | 0, 1, ... |
b=908 | ... |
b=910 | 0, 1, ... |
b=912 | 2, ... |
b=914 | 2, ... |
b=916 | 3, 4, ... |
b=918 | 0, 3, ... |
b=920 | 1, ... |
b=922 | ... |
b=924 | ... |
b=926 | ... |
b=928 | 0, 2, ... |
b=930 | 1, 2, ... |
b=932 | ... |
b=934 | 3, ... |
b=936 | 0, 1, 2, ... |
b=938 | ... |
b=940 | 0, ... |
b=942 | ... |
b=944 | ... |
b=946 | 0, 1, 4, ... |
b=948 | ... |
b=950 | 1, ... |
b=952 | 0, 2, ... |
b=954 | ... |
b=956 | 3, 4, ... |
b=958 | ... |
b=960 | 1, 7, ... |
b=962 | 2, ... |
b=964 | ... |
b=966 | 0, 1, 2, ... |
b=968 | ... |
b=970 | 0, ... |
b=972 | 4, ... |
b=974 | ... |
b=976 | 0, ... |
b=978 | ... |
b=980 | ... |
b=982 | 0, 4, ... |
b=984 | 4, ... |
b=986 | 1, 2, ... |
b=988 | ... |
b=990 | 0, 3, ... |
b=992 | 2, ... |
b=994 | ... |
b=996 | 0, 2, ... |
b=998 | ... |
b=1000 | Impossible since 1000=10^3 |
(Colored cells correspond to Sloane's A075090.)
Ellipsis (dots) means that no more terms are known. It does not necessarily imply that the sequence continues. One can conjecture that every row in the above table is a finite sequence.
There are several ways to define new integer sequences from the above table: Concatenate all rows. Or give number of terms in each row. Or list row numbers whose sequences are empty. None of these sequences appear in Sloane's. But since there may be terms not yet discovered in each row, it is probably best not to submit these sequences.
First b for which n occurs in the row: A056993
First b for which all of 0, 1, 2, ..., n occur in the row: A090872
Currently known bases b | OEIS | ||
---|---|---|---|
n>22 | (none) | ||
n=22 | 2^n=4194304 | (none) | |
n=21 | 2^n=2097152 | (none) | |
n=20 | 2^n=1048576 | 919444, 1059094, 1951734, 1963736. | A321323 |
n=19 | 2^n=524288 | 75898, 341112, 356926, 475856, 1880370, 2061748, 2312092, 2733014, 2788032, 2877652, and more. | A243959 |
n=18 | 2^n=262144 | 24518, 40734, 145310, 361658, 525094, 676754, 773620, 1415198, 1488256, 1615588, and more. | A244150 |
n=17 | 2^n=131072 | 62722, 130816, 228188, 386892, 572186, 689186, 909548, 1063730, 1176694, 1361244, and more. | A253854 |
n=16 | 2^n=65536 | 48594, 108368, 141146, 189590, 255694, 291726, 292550, 357868, 440846, 544118, and more | A251597 |
n=15 | 2^n=32768 | 70906, 167176, 204462, 249830, 321164, 330716, 332554, 429370, 499310, 524552, and more | A226530 |
n=14 | 2^n=16384 | 67234, 101830, 114024, 133858, 162192, 165306, 210714, 216968, 229310, 232798, and more | A226529 |
In the above table, there is no guarantee the bases shown are the smallest possible.
See: